Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666446

RESUMEN

AIM: Sex-differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous preclinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex-differences in HFpEF using a two-hit mouse model (leptin receptor-deficient db/db mice plus aldosterone infusion for 4 weeks; db/db+Aldo). METHODS AND RESULTS: We performed echocardiography, electrophysiology, intracellular Ca2+ imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation, and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (versus female) exhibited higher diastolic [Ca2+], slower Ca2+ transient decay, reduced L-type Ca2+ current, more pronounced enhancement of the late Na+ current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K+ currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pretreatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females. CONCLUSION: We conclude that the db/db+Aldo preclinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation-contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca2+ handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilaments properties.

2.
J Am Heart Assoc ; 11(23): e027164, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416174

RESUMEN

Background The pathobiology of heart failure with preserved ejection fraction (HFpEF) is still poorly understood, and effective therapies remain limited. Diabetes and mineralocorticoid excess are common and important pathophysiological factors that may synergistically promote HFpEF. The authors aimed to develop a novel animal model of HFpEF that recapitulates key aspects of the complex human phenotype with multiorgan impairments. Methods and Results The authors created a novel HFpEF model combining leptin receptor-deficient db/db mice with a 4-week period of aldosterone infusion. The HFpEF phenotype was assessed using morphometry, echocardiography, Ca2+ handling, and electrophysiology. The sodium-glucose cotransporter-2 inhibitor empagliflozin was then tested for reversing the arrhythmogenic cardiomyocyte phenotype. Continuous aldosterone infusion for 4 weeks in db/db mice induced marked diastolic dysfunction with preserved ejection fraction, cardiac hypertrophy, high levels of B-type natriuretic peptide, and significant extracardiac comorbidities (including severe obesity, diabetes with marked hyperglycemia, pulmonary edema, and vascular dysfunction). Aldosterone or db/db alone induced only a mild diastolic dysfunction without congestion. At the cellular level, cardiomyocyte hypertrophy, prolonged Ca2+ transient decay, and arrhythmogenic action potential remodeling (prolongation, increased short-term variability, delayed afterdepolarizations), and enhanced late Na+ current were observed in aldosterone-treated db/db mice. All of these arrhythmogenic changes were reversed by empagliflozin pretreatment of HFpEF cardiomyocytes. Conclusions The authors conclude that the db/db+aldosterone model may represent a distinct clinical subgroup of HFpEF that has marked hyperglycemia, obesity, and increased arrhythmia risk. This novel HFpEF model can be useful in future therapeutic testing and should provide unique opportunities to better understand disease pathobiology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Animales , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Aldosterona , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...